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Od objavenia grafénu sko prototypového dvojrozmerného materidlu,
ktory je semikovom, atomdrnc tenké materidly vykazuji takmer vietky
materidlové viastnosti aké pozndme, & uZ sii to kovy, polovodile, izolgtory,
feromagnety, antiferomagnety alebo supravodi¥e. V sifasnej dobe jednou
z najfascinujicejiich motivicil pri $0diu atomame tenkych dvojrozmernych
maleridlov je tzv. van der Waalsovskd kon$trukeia heteroftruktir s dérazom
na vopred poZadované viastnosti systému. V tomto zmysle je mo¥né vytvort
iplne novu triedu materidlov s nepreskimanymi fyzikdlnymi efektami,
UloZenim supravodia k feromagnetu je moZné generoval topologickt
supravedivost’ [1,2], ktord je kiéovou ingredienciou pre topologicke kvantove
potitanie [3]. V tejto bakalérskej prici budeme Studovat efektivny nizko-
energeticky model opisujfici elektronovi Strukhiru elektrénov a Cooperovskych
parov [4,5] vo van der Waalsovskej heteroStruktire feromagnetu a supravodita.

Absolvent polas $hidia nadobudne teoretické vedomosti zo zikladov tedrie
tuhych Tatok a praktické skisenosti podas riefenia konkrétneho problému
analytickymi a numerickymi metédami. Ziskané vedomosti a prakiicke
skiisenosti nmonia dal¥f kariérny rast v akademickom prostredi.

supravodivost!, feromagnetizmus, van der Waalsovské heteroftrukniry,
materidlovy v¥skum, nanotechnolégic.
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Sthrn v statnom jazyku

Cielom predlozenej bakalarskej prace bolo studium vzajomnych efektov supravodivosti a
magnetizmu v dvojrozmernych krystalickych systémoch tvoriacich van der Waalsovské het-
erostruktiry. Hlavnym zaujmom bolo stidium kvazicasticovych disperznych relacii a parovacich
korelacnych funkcii vzhladom na amplitidu spinovo-orbitalnej interakcie a jej vplyv na Cooper-
ovské parovanie elektrénov. Studovany systém supravodic/feromagnet bol opisany efektivnym
modelom platnym pre atomarne tenky supravodi¢ NbSes, patriaci do triedy prechodovych
dichalkogénov (angl. transition metal dichalcogenides) s tzv. Isingovskym parovanim, a
polovodicovy feromagnet (napr. Crls, CroGeyTeg). Bol preskumany vplyv Styroch fyzikélnych
parametrov na kvéazicasticovi disperziu a korela¢né funkcie pre Cooperove pary. Menovite bol
analyzovany chemicky potencidl u, parameter zodpovedny za spinovo-orbitalnu interakciu fg,,
supravodivy s-vlnovy singletny parovaci potencial Ag a tripletny parovaci potencial A¢. Boli

zistené nasledujice skutoc¢nosti:
1. Bso spOsobuje rozstiepenie energetickych pasov a spinovi polarizaciu stavov.

2. Ag otvara energetickit medzeru v kvazicasticovom spektre v okoli chemického potencidlu

L.
3. A¢ zmensSuje energeticki medzeru singletného parovania v kvazic¢asticovej disperzii.

Studiom korelac¢nych funkcii parovania elekronov sme zistili, ze bez singletného parovania sa
v systéme nevytvaraju viazané stavy a to pri lubovolnych podmienkach udanych zvysnymi

parametrami.

Kltcové slova: supravodivost, van-der Waalsovska heterostruktura, spinovo-orbitdlna inter-

akcia, kvazi-casticova disperzia, korelacné funkcie, singletné a tripletné parovanie.
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Abstract

The aim of the presented bachelor thesis was to study the mutual effects of superconductivity
and magnetism in two - dimensional crystalline systems forming van der Waals heterostructures.
The main interest was the study of quasiparticle dispersion relations and pairing correlation
functions with respect to the amplitude of spin-orbital interaction and its influence on Cooper
electron pairing. The studied superconductor / ferromagnet system was marked by an
effective model valid for atomic thin superconductor NbSeg, belonging to the class of transition
metal dichalcogenides with the so-called Ising pairing, semiconductor ferromagnet (e.g. Crls,
CraGeaTeg). The influence of four physical parameters on quasiparticle dispersion and
correlation functions for Cooper pairs was investigated. Namely, the chemical potential y, the
parameter responsible for the spin-orbital interaction (s, the superconducting s -wave singlet
pairing potential Ay and the triplet pairing potential Ay were analyzed. The following facts

were found:
1. Bso splits energy bands yielding spin polarization of the states.
2. Ag opens the energy gap in quasiparticle spectrum around the chemical potential p.

3. A¢ decreases the energy gap in the quasiparticle dispersion.

By studying the correlation functions of electron pairing, we have found out that without
singlet pairing, no bound states are formed in the system under any of the conditions given by

the remaining parameters.
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Introduction

The purpose of the bachelor thesis is to calculate and analyse electronic structure of supercon-
ducting quasi-particles in van der Waals heterostructures of ferromagnet/superconductoran
described by an effective model Hamiltonian.

In the first chapter we present description of van der Waals heterostuctures providing exam-
ples of well established systems. The basic knowledge of ferromagnetism and superconductivity
is also introduced. The former one is described on the mean-field level and the later in concept
of so-called BCS theory. We present features of microscopic mechanism of superconductivity
by means of Cooper pair formation. Both the ferromagnetism and superconductivity are core
ingredients in van der Waals heterostructures made of ferromagnetic and superconducting
layers. We also discuss in details spin-orbit coupling which in van der Waals heterostuctures
can play significant role on electronic band structure spin splitting and specifically can affect
superconductivity via Ising pairing.

The second chapter formulates an effective model Hamiltonian relevant for single-particle
states close to the Fermi level. We present extension of the Hamiltonian in Bogoliubov—de-
Gennes form and derive analytical solution of the eigenvalue problem. We further analyze the
quasi-particle energy dispersions and spin expectation values for selected set of parameters to
demonstrate possible physical situations. We also briefly discuss Gorkov’s pairing equations and
correlation functions. We calculate singlet and triple pairing contributions to the correlation
functions, s-wave and p-wave pairing, and present numerical results for the same set of

parameters as for the quasi-particle dispersions.
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1 System description and fundamen-

tal interactions

1.1 Van der Waals heterostructures

One of the most significant event in the field of condensed matter physics within the last 20
years has been demonstration of existence of atomically thin two-dimensional systems. The
pioneering system is graphene discovered back to 2004 [1]. To be specific, graphene is the
material with strict geometrical two-dimensional hexagonal structure possessing outstanding
attributes and physical properties including high electron mobility, stiffness, spectacular
electrical, chemical, and optical properties [2]. In this way, graphene is a "father" of two-
dimensional materials (today we know more than 2500 other, atomically thin materials) and
it launched new interest in the field of solid state. By combination via stacking of these
crystals we can create new materials. In general, stacking of two-dimensional materials changes
a physical properties and we can fabricate a material with novel hybrid properties. These
activities open the way for designing of new materials and nano — devices [3]. It is even more
fascinating we are able to gain control over the changes in yet mentioned physical attributes
by the right choice of the angle by which are the independent layers rotated relative to each
other what is also known as "twisting" [4].

The name van der Waals (vdW) heterostructers describes the way how are the single layers
bound together to form crystal. While the in plane stability of the 2D crystal is governed by the
strong covalent bonds the layers are bound via weak van der Waals interaction similar to how
a sticky tape attaches to a flat surface. Thanks to the ubiquitous nature of vdW interactions
new super-thin materials can be added together with no limitations what resembles Lego blocks

and that is why the vdW heterostructures are sometimes called Lego-structures, see Fig. [L.1]
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Fig. 1.1: Schematics of van der Waals heterostructures building using two-dimensional
crystals (table right top) as Lego blocks (right bottom) forming a realistic atomic structures
(left) allowing for construction of a huge variety of layered structures using two-dimensional

crystals. Reprinted from Ref. [5].

Not so long ago, a special type of vdWs came to the attention of material scientists and
nowadays known as monolayer transition metal dichalcogenides. Transition metal dichalco-
genides (TMD) are two-dimensional materials composed of one layer of triangularly arranged
transition metal atoms (e.q. Mo, Nb, W, ...) and two layers of triangularly arranged chalcogen
atoms (e.g. S, Se, Te, ...) while the layer of transition atoms is sandwiched between them, see
Fig. [[.2] Together they form a 2D honeycomb lattice similar to graphene but with broken
sublattice symmetry [6]. Thanks to their strong mechanical properties, relatively high electron
mobility and massive Dirac energy spectrum transition metal dichalcogenides are promising
candidates for next generation transistors [7]. The breaking of the in-plane symmetry together
with strong atomic spin-orbit coupling (SOC) results in strong Zeeman field near the K and
—K valleys (corners of the first Brillouin zone). This field strongly polarizes electron spins to
the out-of-plane directions and the spin polarization is an odd function with respect to the K,
therefore the direction of spin in —K valley is opposite to the one in K valley. Such a field is

usually denoted as Ising SOC field.
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Fig. 1.2: Atomic strusture of transition metal dichalcogenide single layer. (a) side view; and

(b) top view. Reproduced from Ref. [§].

Within this work we will consider a model describing low energy bands valid close to the
valence or conduction band edges of any TMD), also called valleys. The model can describe,
e.g., MoSy or NbSes well known as Ising superconductors [9, |10, |11]. However, spin-triplet
Cooper pairs can induce superconducting pairing when superconductor is in vicinity to a

ferromagnet [6].

1.2 Ferromagnetism

Response of a material to an applied magnetic field define diamagnets, paramagnets and
ferromagnets. For the first two, diamagnets and paramagnets, a weak response is typical.
A diamagnetic material create magnetic field with opposite direction to the external field and
therefore the total magnetic field in the material is "weaker" then the applied external field.
A paramagnetic behaviour can be explained by an existence of atomic (also molecular or ionic)
magnetic momentum which can be induced, e.g., by odd number of electrons in atom leading
to unpaired atomic spin or orbital momentum. Thermal fluctuations randomize the magnetic
momenta of atoms (down to zero temperature) and therefore a macroscopic magnetization
is zero. However, if we apply external magnetic field, moments begin to orientate into the
direction of the external magnetic field and in fact, the final magnetic field in material is

"stronger' than the applied external field. With increasing magnitude of applied external field
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the magnetization, which is defined as the magnetic moment per volume, increases until its
value reaches the saturation magnetization Mg. After a removal of external field, paramagentic
materials are not able to sustain this enlarged field and it is once again destructed by thermal
fluctuations — the material is not a permanent magnet.

The most interesting are ferromagnets. A ferromagnetic material can show a finite
magnetic moment even in the absence of an external field if the temperature is below a critical
temperature, the so called Curie temperature T.. This process is carried out, if the parallel
orientation of electron spins in the atoms leads to a reduction of the total energy of the system,
i.e. of the exchange interaction between the spins. In other words the exchange interaction
can spontaneously order the magnetic moments against the thermal fluctuations.

In order to describe a spontaneous magnetization below the T, temperature P. -E. Weiss
used a molecular field theory [12]. In his work the exchange interactions between electron
spins were described by considering a free electron in the mean field of all the others. This so

called "exchange field" can be written as
Hy. = o MT)M (1.1)

where M represents the magnetization and the parameter A\ is explicitly dependent on

temperature. This idea led to the expression for the magnetic susceptibility of ferromagnets

(1.2)

which is also know as the Curie-Weiss law with a material-specific constant C |12]. The
most fundamental representant of ferromagnets is iron with Curie temperature T, = 1043 K,
beneath this temperature iron possess ferromagnetic attributes, while above it behaves as the
paramagnetic material [13].

We note that recently several atomically thin two-dimensional ferromagnets were discovered
and studied. For instance, Crls is layered ferromagnet with Curie temperature of 61 K and

45 K for single layer [14].
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1.3 Superconductivity

1.3.1. Basic properties

Superconductivity is one of the most fascinating quantum phenomenon in which electrons
condensate forming pairs and flow with zero resistance. However, strong enough magnetic
field can destroy the supercoductivity by breaking the electron pairs. It has been shown that
superconductivity in thin films of TMD could withstand an applied magnetic field as strong
as tens of Tesla due to specific Ising pairing of electrons.

Superconductivity goes back to 1908 when Heike Kamerlingh Onnes was the first to
liquefy helium, using several precooling stages and the Hampson—Linde cycle based on the
Joule-Thomson effect. This way he lowered the temperature to the boiling point of helium
(-269 °C, 4.2 K). By reducing the pressure of the liquid helium he achieved a temperature
near 1.5 K. These were the coldest temperatures achieved on earth at the time. This allows to
cool down typical resistive conductor below roughly 4 K, and observe a transition where the

electrical resistance p changed rapidly form finite value to zero [15], see Fig. .

Fig. 1.3: Typical dependence of electrical resistance p(T) of a typical conductor as a function

of temperature T, changing its state to superconducting below a critical temperature T¢.
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This temperature is the boundary between normal and superconducting state of material
and it is also known by the term critical temperature 7, (distinguish the critical temperature
from the magnetic transition in previous section). Similar results were shown for other alloys
and metals. Later measurements shown that resistivity of superconducting materials beneath
T, has to be lower than 1073°Qm. This resistivity is significantly less than the resistivity of
copper in extremely pure state (~ 10_120777,). It was also shown that critical temperatures
of regular superconductors are material constants and they can be found in the temperature
interval 0.5K < T, < 20K. Thanks to the just mentioned attribute and phenomenon of
electromagnetic induction we do possess an ability to create electric currents with relatively
long lifetime. These currents are able to circulate within the superconductor for amount of
time measured in hundreds of years. As it is possible to create the superconducting state of
material, it is also possible to destroy it by an external magnetic field with magnitude above

critical magnetic flux density B, depending on material and temperature. For the majority of

B.= By l1 _ (;ﬂ . (1.3)

materials this dependence follows

normal state

superconducting
state

Fig. 1.4: Dependence of the magnetic flux density as a function of temperature in relative

units scaled on B, on critical magnetic flux density and critical temperature 7.

It is quite interesting that superconducting state can be destructed by the magnetic field of

it’s own electric currents.The ability of perfect diamagnets to expel a magnetic field (which is

10
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also a necessary condition of superconductivity) was proven twenty years after the discovery of
superconductivity by Meissner and Oschsenfeld, see Fig. for illustration of the diamagnetic

effect of a superconductor. The magnetic flux density B can be calculated as
B = g (H + M), (L4)

where M stands for the magnetization of the material and H, is the applied external magnetic
field. If we cool the probe under the critical temperature 7T, we change the state of the probe

from the normal-conducting to the superconducting state and the magnetic flux gets expelled

from the metal and B = 0. If we use the Eq. (1.4)), it follows
He=-M=yy,M (1.5)

where x, = —1 is the magnetic susceptibility which value —1 is characteristic for perfect
diamagnets. This phenomenon is called Meissner-Ochsenfeld effect and is also well known for

quantum levitation effect, where is the levitating magnet "locked" above the superconductor.

BAAAAAALAAARMN B A

T>T, T<Te
B=B_ B=<B_.

Fig. 1.5: Hllustration of the Meissner effect. Magnetic flux penetrates the system in normal
state (left) while it is expelled from the interior of the system (shown by the circle) in

superconducting state. Reproduced from Ref. [13].

11
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1.3.2. Theoretical description and Cooper pairs formation

John Bardeen, Leon Cooper and John Robert Schrieffer have formulated microscopic theory
of superconductivity, further referred just as BCS theory [16, |17], since discovery of the
superconductivity by Heike Kamerlingh Onne’s in 1911. Main idea of the theory is formation
of bound electron states originating a superconducting condensate.

Imagine a moving electron through a solid attracting its positive charged ions. This
attraction causes lattice vibrations with low frequencies because of the fact the mass of the
electron is much smaller than the one of the ions. The direct consequence of this action is
the local increase of the density of positive charge towards the electron gets attracted. In the
case with stronger attractive interaction than the repulsive Coulomb interaction between the
electrons (this can be reached at low temperatures) an attractive interaction between the two
electrons comes into play. The concept of the BCS theory elaborates on idea of formation of a
BCS ground state with reduced total energy by the weak net attractive interaction between
the electrons near Fermi surface of the material.[1§]

Considering an electron moving through the crystal the distortions of the periodic charge
density are introduced. Let us elaborate on more general concept assuming a Fermi sea where
all states below the Fermi energy e are occupied. For non-interacting electrons, the total

Hamiltonian in occupation number representation formalism reads [19)
=3 e} ,0k0. (1.6)
k O

where the operator é}: , is the fermion "creation operator" and it creates an electron with

wave-vector k and spin o, while ¢ , is the corresponding annihilation operator and it destroys

the corresponding electron state. The occupation number operator is defined as
Ao =0 & 1.7
Nk,o = Ck oCk,0- ( . )

It is important to note that the total energy of the system can be obtained by the number
of particles in each state multiplied by the corresponding one particle energy ¢ and finally
summed over all possible momenta k and spin ¢ = £1 (measured in {g} units). At this point

the Pauli’s exclusion principle requires each state |k,o) to be occupied with one electron only.

12



10P UPJS Bachelor thesis

By choosing two electrons from the non-interacting Fermi sea and allowing them to occupy
orbitals above Fr and interact through an attractive potential, one can show that these two
electrons can be in a lower-energy state [20]. Consider two electrons at positions r; and ra

with corresponding momenta ki and ks can be described by the planewave states

71 €ik1.rl, q)kg (1‘2) = L€ik2.r2, (18)

VO VO

where ) is the volume normalization. Assume now an attractive interaction between the

Dy, (rl) =

electrons. It this case we can express wavefunction of the pair of electrons in the form

Ppair (r1,12) = Y a(ky, ko) Py, (r1) Py, (r2). (1.9)
kq,ko

By changing to center of mass and relative coordinates

K=k +ko
1
R = §(r1+r2)
1 (1.10)
k=-(ki -k
5 (ki —k2)
r=r]—r9
we have then
ki-ri+korm=K-R+k-r (1.11)
and
VUpair(r1,12) = Za(k,K)eiK.Reik.r_ (1.12)
kK

The total kinetic energy of the pair of electrons 7" is given simply by the sum of the kinetic

energies of both electrons

T= —

0 (1.13)

2m 2m m

_ g + i B lK2 kQ] .

Natural behaviour of a system is to reduce its energy. It is easy to see that the kinetic energy

takes a minimal value for K =0

or K
— 1.14
0K  2m 0 (1.14)
what implies
k; = —ks. (1.15)

13
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Taking into account the fact in Eq. (1.15]) the wavefunction takes the form
Upair(r1,12) = Z a(k,K)eik'rle_ik"r2 , (1.16)
kK
where a(k) = 0 for k < kg as the states form a degenerated Fermi system. The Schrodinger

equation for the two electrons reads

2
<—2ﬁm (V% + V%) Y(ri,r2) + V(r1,r2)> = (E+2Ep)(r1,12), (1.17)

where the energy E is measured from 2Fp.
Let us assume V(ry,r2) = V(r) and as we have mentioned before, refer the energy to that

of two particles on the Fermi surface, then Eq. (1.17) becomes

) V1)) = (B 42000 (119

Using expresion for the wavefunction in Eq. and defining
=5~ Fp, Viw = (k|V[K), (1.19)
we obtain the Bethe-Goldstone equation [21]
%:Vk,k/a(k) = (£ —2ex)a(k) (1.20)
/

where we sum over all k’ # k. The last equation describes the scattering of a pair (k,—k) —
(k',—k').

At this point one arrives to the oncoming question — What should be in general the sign of
the potential Vi /7 If Vi i/ is attractive, we obviously expect that the electrons may bind in
pairs. By chose Vj x/ to be attractive and being constant over the energy range from zero to
some energy level Bp measured from the Fermi energy Ep

—V/Q €k, €k’ < Ep
Vi = (1.21)

0 otherwise.

By using the assumption in Eq. (1.21) we can rewrite the Eq. (1.20]) as follows

(B - 26)a(k) = —gZa(k'), (1.22)
Z

14
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and
c

E—2¢,
for all [k| > kp. Here cis the constant ¢ = —§ ¥, a(k’) and has to be obtained self-consistently

a(k) = (1.23)

including the energy F
c=——=y —. (1.24)

To sum up over the states one can use density of states N (¢)

1= V/ED ;EVEG (1.25)

where the density of states N(e) ~ N(0) which allows to perform integration yielding

E=-—2"2 (1.26)

In case of weak coupling where N(0)V < 1, we obtain

E = —2Fpe N0V (1.27)
For strong coupling, N(0)V > 1 on the other hand

E=—EpN(0)V. (1.28)

If we consider the case of the weak coupling and measure the energy of the two electron state

from zero level, we obtain

1
~ 2ep — 2hw —_—— 1.29
€~ 2¢ep 0exp< VN(EF)> , (1.29)
where the second term is also known as superconducting gap |22, |15]
Ao = 2 ! (1.30)
= exps ———— ¢- .
0 O VT VN Gp)

Existence of the superconducting gap is a result of attractive interactions between electrons
close to the Fermi surface which leads to the formation of energetically more stable two-electron

states, Cooper pairs.
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1.4 Spin-orbit coupling

The spin-orbit coupling (SOC) is a relativistic effect caused by the interaction of a particle’s
spin with its motion inside a potential. A classical example is a shift in an electron’s atomic
energy levels, caused by the electromagnetic interaction between the electron’s magnetic dipole,
its orbital motion, and the electrostatic field of the positively charged nucleus. This leads in
splitting of spectral lines, which can be interpreted as an analogy to the Zeeman effect, as
a consequence of two relativistic effects: the apparent magnetic field seen from the electron
perspective and the magnetic moment of the electron associated with its intrinsic spin [23].
To start from a more theoretical point of view, one should have a closer look at the SOC

Hamiltonian

eh

0 (ExD). (1.31)

ﬁSOC =
which can be extracted from the Pauli equation [24]

2 2 4 2 2
P eh eho-pxE  eh P ehp (ehB)
—+V+-—0-B- — E— — B P —E
om T om” 2z amEe Y BT e T amia’ a3z | [V =El)
(1.32)

for electrons without external magnetic fields as a relativistic correction. The meaning of the
symbols used is as follows E denotes to electric field intensity, B is the magnetic flux density,
o = (0y,0y,0,)T refers to vector of Pauli matrices, p = —ihV is the momentum operator, m
is the particle mass and ¢ is the charge of the particle.

In general electrical field E includes internal fields as well as external ones caused by
an applied gate voltage. In solid structures the electrons are also affected by the average
periodic crystal potential. Accordingly, SOC reveals the symmetry of the crystal lattice and the
eigenstates of the Hamiltonian Hgoc must obey Bloch’s theorem. As the SOC introduces
mixing of spins, the eigenstates of the Hamiltonian Hgoc can be written in the following form
[25]

[0t (1) = [angc(r) 1)+ by () [ 1] (1.33)

and

[y () = a1 (r) 1) =0 i () [1)]e" (1.34)

16
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As we can see, both the eigenstates are written as a superposition of spin states |1) and |{)
relative to a chosen quantization axis [26] with band indices n and wave vector k. SOC is in

general a weak interaction, therefore we expect the lattice—periodic parameters to fulfill
|an,ic| 1> |by k] (1.35)

and according to this assumption it is possible to call the states in Eqgs. (1.33]) and (1.34))
effective spin up (f}) and effective spin down ({}) states.

If we use the time reversal operator for spin-1/2 particles

T =—io,C, (1.36)
where (' is the operator for complex conjugation, it is possible to prove the time reversal
invariance of the Hgoc Hamiltonian. The direct consequence of this feature is the same
energy eigenvalues according to Kramer’s theorem [27] of effective spin up state |¢),,  + and
its time-reversed

T[) 31 (1) = [ah i (r) 1) = b s () [1)] €. (1.37)
In order to better understand the physical meaning of the SOC, consider a material with
and without spatial symmetry. For a centro-symmetric material that contains space inversion
point, we can easily replace the k by the —k and this change will not change the physical
properties of the assumed state and it’s time reversed state. In this case the effective spin up
and spin down states possess the same energy eigenvalues what implies the degeneracy of the
energy bands.
In case of materials without spatial symmetry the SOC typically leads to the broken
twofold spin degeneracy except the so-called time-reversal invariant points symmetry points.
This is the reason why is the SOC field usually interpreted as k-dependent Zeeman-like field

[28,129]. In such a case the related Hamiltonian can be written as
Hsoc = (k) - 0. (1.38)

As the SOC preserves the time reversal, the spin-orbit field (k) has to be an odd function
in momentum k. However we should note the fact that the analogy is not complete. The

main difference between the Zeeman effects and SOC is that SOC preserves time-reversal

17
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symmetry. Accordingly, the band splitting caused by SOC has nothing to do with the rise of a
net magnetization in the assumed material. In the case of our problem the model Hamiltonian
for SOC takes on the form [6]

Hsoc = €800z, (1.39)

where the condition of time reversal symmetry enters via e (valley index) which possesses
value € =1 for the K valley and ¢ = —1 for the —K valley. In this sense the Hgoc stays odd
in k.

18
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2 Problem formulation and Results

2.1 Hamiltonian of the system

Recently discovered superconductivity in thin films of TMD can survive strong magnetic fields
up to 40 Tesla |10, |9]. An explanation originates from a specific lattice structure of the TMD
that allows the moving electrons in the material to experience strong internal magnetic fields of
about 100 Tesla. This special type of internal magnetic fields emerge from spin-orbit coupling
and instead of damaging superconductivity it protects the superconducting electron pairs from
being broken. Such type of superconductors are called Ising superconductors. The pairing
mechanism has been soon observed in others TMD systems having similar lattice structure,
such as NbSey [11] without need of heavy liquid gating of MoSs [10]. This suggest that the
bands near the Fermi level need to be filled. In TMD systems the Fermi surface is specifically
appeared in vicinity of the so called K-valleys (edges of the first Brillouin zone). We note that
these energy bands originate mainly from the transition metal d,» orbitals.

In order to describe the electronic states close to the Fermi level we introduce an effective

Hamiltonian near the K and —K valleys describing single particle states in the basis of (cit,c))

2
Ho(k=p+eK) = (%—u) 00+ P00, (2.1)

where K stands for the wave-vector of the K-point, € = +1 is the index of the the valley, p
represents the momentum measured from the K or —K points, p is the chemical potential,
Bso is the spin-orbit coupling strength responsible for spin pinning in z-direction referred also

as Ising spin-orbit coupling and

og = , 0, = , (2.2)
01
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are the Pauli matrices. Finally the Hamiltonian can be written in the matrix form as follows

2
Qp*m_'_gﬁso_ﬂ 0

Ho(k=p+eK) = )
0 fm—éﬁso—ﬂ

(2.3)

The spin close to the K valleys is quantized in out-of-plane direction (z-axis). The origin of
the By term can be explained by the coupling between the transition metal d-orbitals and
p-orbitals of chalcogen atoms [30]. This coupling is responsible for the broken in-plane mirror
symmetry in the material and therefore it pins the electron spins to the out-of-plane directions.
Such an effect can be viewed as a valley resolved Zeeman field related to the Ising spin-orbit
coupling.

To investigate superconductivity in TMD we follow standard procedure of mean field
Bogoliubov-de-Gennes approach [31] and use the Hamiltonian Hy given in Eq. to write

the effective quasiparticle Hamiltonian in the Nambu basis (ct, ck i,ctm,ctk 1)

Ho(k)  Agioy

Hpda (k) = (2.4)
—Apioy —Hp*(—k)
where oy is the Pauli matrice
0 —i
oy = , (2.5)
i 0

and Ay is the spin-singlet s-wave pairing potential. The Boguliubov-de-Gennes Hamiltonian

in vicinity of the K valley takes a form of the 4 x 4 matrix

p2
2m + Bso —H 0 0 AV
2
0 L Bo—p AV 0
Hpac(p+K) = T 2 (2.6)
0 Do Bt 0
2
Ao 0 0 —gfm + Bso +u
and in the —K valley it reads
p2
om Bso — M 0 0 AY)
2
N 0 Lt Bo—p A 0
Hpac(p—K) = m ) (2.7)
0 _AO _QPTR +6so +/L 0
2
A0 0 0 _fim - Bso +pu
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We note that momentum and wave vector are related through the de Broglie relation p = hk. By

solving the time independent Schrodinger equation for the Boguliubov-de-Gennes Hamiltonian

Egs. (2.6) and (2.7) we obtain the quasiparticles energy spectrum near the +K valleys

1
Ep-l—eK

_5650 - Q0/2m

5650 - QO/Qm

—fso + Qo/2m

£fBso +Qo/2m

(2.8)

where Qo = \/ pt 4+ 4m2A — dmpp? + 4m2p2, and the corresponding normalized eigenstates

read

‘wrl)+sK> =

’¢13;+6K> =

where Py = p? —2mpu+ Qo.

’¢g+sK> =

‘wé+eK> =

As we have already mentioned, the Ising SOC pins the electron spins to the out-of-plane

direction. This can be easily seen for calculated spin expectation values. In order to calculate
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spin projections we span the spin operators in the basis of Pauli matrices

1 0 00
1 0 -1 .00
02 =5 (co+o0,)®0, = (2.10)
0 0 00
0 0 00
0100
1 1000
Oze = 5 (00+0,) @0, = : (2.11)
2 0000
0000
0 —i 0 0
1 ¢t 0 00
Tye = 5 (oc0+0.)®0oy = . (2.12)
0 0 0O
0 0 0O
Analogically we have defined spanned Pauli matrices for holes
000 O
1 000 O
0z =5 (o0—0.)Q0, = : (2.13)
001 0
000 —1
0000
1 0000
Ou, = 5 (00—0.) @0, = : (2.14)
0001
0010
000 O
1 000 O
o = 5 (00— 02) ©oy = , (2.15)
000 —i
00 ¢ O

where ® is the Kronecker product of two matrices. The expectation values of spin projections of

electron and hole states were calculated according to the definition of the quantum mechanical
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observable
(A) = (vl Aly) :/_mw*ﬁ@bdx. (2.16)
The spin expectation values for the electron in units of A/2 read
N 1
<SZ7,( ¢p+sK> )> _4(7771)+(7748r]1%)P§/(mAO)2
A 2 0, )
4(n—1 1) P2/ (mA
<Szn( 1/}p+6K> )> _ (1 )+(77§R)0 4/ (mAo) (2 17)
A 3 - 4(n— P2 mA 2 ) .
<an(%+€1{> )> _ dn= 1)+ DPE/ ()
A 4 4(n=1)+(n+1)PE/(mdp)?
<Szn( ¢p+EK> )> (n=1) (ngR)1 1/ (mAo)

where 7 = %1 for electrons and holes, respectively, Py = p? —2mu+ Qo, Ro = 1+ (Py/m&o)?/ 4,
and Ry = 1+ (P1/mdg)?/4. The in-plane spin components are found to be zero

(Seapreac) )Y (Cnllora) D)) (o

(S (oprac) ) | | (Snems))) | o o)
(Seuleprac) ) | [ Sunlleipra))) | |0 |
(Seuorex))) )\ (o)) 0

2.2 p-wave superconducting pairing

The p-wave pairing can be effectively described extending the s-wave pairing considering an
additional non-diagonal term in the Boguliubov—de-Gennes Hamiltonian [32]. In this sense
one introduces the spin-triplet potential A generalizing the superconducting gap parameter

[33]. The gap term Agioy is extended to the form (Ao + Ataz)iay, and the Hamiltonian takes

the form
2
gim_ﬂ_FEﬁso 0 0 Ao+ Ay
2

N 0 L — i —efs —Aog+ A 0
Hgac = am » 2 (2.19)

0 —Ao—Ay —5+p—ebso 0

2
A AT 0 0 gfm"‘u“f‘gﬁso
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The eigenvalues and eigenvectors of this Hamiltonian are obtained analogically as in the

previous section and they acquire the form

El;lH_gK —€Bs0 — Qt/2m
2
Ep+5K _ 5580 - Qt/2m 7 (220)
EE)-FEK —efs0 + Q1 /2m
E;;L)_H;K £Bso +Q1/2m
where Q; = \/ P+ Am2AE — Am2A2 — dmpup? + 4m2p2. The eigenstates read
0 o
_ 2
—Py, 2mA\/1+}L{ ﬂfgz}
2
) B zmA\/lJr}1 {%} 5 B 0
‘wp+sK> - 1 J ’wp+5K> - 0 )
b 12
1+1 {ﬁ} 1
_ 2
0 ViR
Py — 0
2mA\/1+}L[ mﬂ -P
P 12
0 zmA\/H}1 [—1}
3 _ 4 _ m
‘wp+5K> - 0 ) ‘wp+gK> - 1 s (221)
1 =i
1+3 [—%} 0

where we have defined A = Ag+ Ay, Py, = p? —2mp+ Qt and Py, = p> — 2mpu— Q.
In the limit Ay — 0 both the wavefunctions and the energy dispersions reduced to the case
discussed in the previous section. Further we will investigate effect of Ay on the quasiparticle

energy spectrum and spin expectation value projected to the z-axis.
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2.4 Pairing correlations of Cooper pairs

To investigate pairing symmetry of the Cooper pairs one solves the Gor’kov equations [34] to

obtain the pairing correlations. The pairing correlations are defined as follows

Fos(k,E) = —i / T () (Lo (1), coiep(0) (2.22)

0

where a and 3 are particle’s spin. Using Hpqg Hamiltonian in Eq. (2.6)) and expressing the

pairing correlations in the matrix form we can write
F(k,E) =M [¥(k,E)oo+d(k,E)-0clioy, (2.23)

where 1 describes the spin-singlet pairing correlation and d is a vector parametrizes the
spin-triplet pairing. In the case of Ising superconductor the orientation of d is parallel to the
z-axis (perpendicular to the film plane), therefore, we can write d = (0,0,d,). Near the K

valleys one finds [6]
E-ZI- B A(2) - 512) - 520

K, F) = 2.24
VP B = T By 20
2eBs0ép
: K E)=-——"22P 2.2
ERE =8 .
where
2

szgjlfu, M(p,B) = (Mg +& — E%)° +205,(A) — 6 — E*)* + B, Ho=E+i0".
(2.26)

Up to now we have considered the s-wave pairing. To include the p-wave pairing we introduce

the p-wave pairing potential Ay enhancing the d, term having the form

_ AtP(p7E+) +256305pA0

%{p.B) = Q+(p, B4 )Q-(p, Ey) (2.27)
Here
P(p,E) = Af - A} — & — 4%, + E?, (2.28)
Q1+ (P, E) = (Ao + M) + (&p +¢fs0)? — E?, (2.29)
Q—(va) = (AO_At)2+(€p_Eﬁso)2_E27 (230)
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where € = 41 denotes the valley-index and E, = E +i07". After substituting into the previous

expressions we get

) 2
V(p+eK,E) = oA (;;n_ ) e 5 : (2.31)
5 +20% (85— (B —n) - B2) + (83 + (&) - B2)
20h0c (£ 1)+ (—4630 vag-ar (g u)z + E2>
d,(p+eK,E) = > . .
((Ao—At)Z‘F(—&ﬁso—u-i-f;) —E2> ( Ao~ Ay)? <eﬁso—u—|—%) —EQ)
(2.32)

The pairing correlation functions for electrons for a given spin can be obtained by multiplying
the matrix in equation ([2.23) by the eigenvectors of the effective Hamiltonian in equation (2.4

by appropriate combination of spinors. After some algebra we obtain
5 2
-85 - 83— (f—n) +E?
2 2 2
Lo, (83— (5 -n) - B2) + (W34 (£2)" - 22)
2 2
2Bs000¢ (2%71 - N) At (—4ﬂs20 + A% — A% — (22” _ > + E2>

Foy(p+eK,E) = Ao

+

+ Ao 9 22\ 2 9 2 2\ |
((AO—At) +<—8/350—M+%) —E > ((Ao—At) (8550 gm) — L >
(2.33)
and
) 2
-8 (g -n)
Fy_(p+eK,E) = -4 +

2 2
o () ) (5 (B )
200080 (8 )1 (452 + 8- 02 - (£ -n) -+ 27)
2 2
((Ao—At)2+(—sﬂso—u+§’;) —E2> <(A0—At)2+(5580_ﬂ+§;) _E2>

(2.34)

+Ag

In the following we analyse the pairing correlations for electrons and holes considering set
of parameters analysed in the previous section. Pairing correlations are functions of energy

and momentum representing the affinity of the particles with a certain momentum, energy
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and spin to create bound states (Cooper pairs), either singlet or triplet states. The correlation
functions extend relatively large range of values, therefore, we plotted them as color maps in
logarithmic scale.

Similarly as in the previous section we analyze effect of the parameters [y, 1 and Ag on
the pairing correlations while we initially set Ay =0 eV. According to the definition of d.,
F_4 and Fy_ for this particular case it is obvious that d, acquires zero values if at least
one of the parameter [, or Ag is equal to zero, and F_, F_ are zero for single pairing
Ap=0. Therefore we plot just the function 1 for each of the independent change in the decisive
parameters and the case with all the parameters equal to zero. The case with Ag # 0 will be
analysed separately (see Fig. [2.7al).

We start to analyze the 1 function characterizing spin-singlet pairing correlations varying
Bso, pt and Ag independently. According to the definition of v function Eq. the spin-
singlet pairing functions do not depend on ¢, so the visualised calculations are valid for both
valleys. From dependence shown in Fig. one can conclude that the spin-singlet pairing is
non-zero even for all of the parameters are equal to zero.

Pairing correlation function v in the presence of non-zero i in normal state is shown in
Fig. . One sees that the curvature of the not yet opened gap (the gap is opened by Ag # 0)
is the same as the in the quasiparticle dispersion (Fig. . Interestingly, the area between
the electron and hole dispersions possesses negative values of 1) which implies relatively low
probability to find the spin-singlet bound states in this area.

The fact, that the change in Ag parameter opens the superconducting gap in the quasi-
particle dispersion is also reflected in Fig. [2.6c, where ¢ follows quasiparticle dispersion
dependencies where inside the energy there correlation is minimal suggesting minimal presence
of the paired states.

The last of the independent changes of parameters is related to the spin-orbit coupling s,
parameter. The singlet pairing correlation function v is shown in Fig. [2.6b] Dependence of the
1 function also follows the quasiparticle dispersion, see Fig.[2.2] while it possess negative values

in the areas close to the individual energy bands and in the area between the intersecting lines.
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Fig. 2.6: Calculated spin-singlet pairing correlations as a function of quasiparticle energy and
momentum for (a) fso =Ag=p="0; (b) Bso=5-10"* eV, Ag=pu=0,; (c) Ag=5-10"% eV,
Bso=p=0,1; (d) p=5-10"" eV, o = Dy = 0.

In following we analyse effect of the Ay parameter on the pairing correlations. Specific
feature of the Ay parameter is the way it contributes to the final pairing correlation. While
Ao = 0 the correlation functions for electrons and holes possess zero values independently of
other parameters. Non-zero Ay parameter will no cause the dependence of pairing correlations
on ¢ and therefore the calculated properties are once again valid for both valleys.

In Fig. we show pairing properties for non-zero spin-singlet potential Ay and zero
spin-orbit coupling. In this case the spectral gap between the electrons and holes is opened as
shows function 1, see Fig. Spin-triplet pairing is zero, see Fig. [2.7b], confirming obviously

that it is impossible to get spin-triplet correlations for only Ag # 0. Functions F_ and F,_
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are formed just by the 1 function having opposite sign, compare Fig. [2.7a] and Fig. and
2.7dl

dz

0.004 q (b)

0.00Z 4
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Flew]
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Fig. 2.7: Calculated Cooper pairing properties as a function of quasiparticle energy and
momentum. (a) spin singlet pairing 1 in units (eV)~2; (b) spin triplet pairing d, in (eV)~2;
(c) pairing correlation components F_; and (d) Fy_ in (eV)™! for Ag=5-10"% eV,

Bso = = Ay =0.

Now we consider the case of non-zero parameters u, Ag, S50 but we still hold Ay =0 eV.
The uniqueness of this case if compared to the previous situations is in the non-zero values of
the d, function responsible for the spin-triplet pairing, see Fig. taking into account all
of the parameters. One can easily detect the effects of the Ay and (s, parameters which are
common to ¢ while it also possesses individual behaviour represented by relatively high pairing

within the vertical strip located in the center of the gap. Of interest is also the positive value
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of ¢ within the gap which contributes together with the d,, see Fig.[2.8D] to the final non-zero
pairing correlation inside the gap. The pairing correlations shown in Fig. and Fig.
reflect opposite sign valued spin-singlet correlations ) due to zero spin-triplet potential. None

of the calculated properties depends on ¢ in this situation.

Fig. 2.8: Calculated properties of Cooper pairing for quasiparticle energy and momentum as

in Fig. for Ao =PBso=p=5-10"*¢eV and A =0.

The last of the discussed cases in the previous section is the situation with Ay < Ag. In
general the results obtained by the change of Ay are very diverse. In order to demonstrate
some particular results we have chosen a set of parameters B =5-107% eV, p=5-10"% eV,
Ag=5-10"%eV and Ay = 2.5-10~% eV. The functions d., 1) and pairing correlations F_, F, _
are shown in Fig. (2.94), (2.9b), (2.9d) and (2.9d). The most interesting change is observed

in the d, function. It still reflects the basic effects of the first three independent parameters
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while it also possess some effects bound to the Ay parameter. The 15 function is not explicitly
nor implicitly dependent on the Ay parameter which implies no changes while we alter the
A¢. Finally the pairing correlations F_ and Fy_ point to the fact the spin-triplet pairing
in this case is much weaker than the spin-singlet pairing and its contribution to the pairing

correlations is relatively small.

Fig. 2.9: Calculated properties of Cooper pairing for quasiparticle energy and momentum as

in Fig. but for Ay =2.5-107% eV and e = 1.
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Fig. 2.10: Calculated properties of Cooper pairing for quasiparticle energy and momentum as

in Fig. 2.9 for Ay =7.5-107% &V.

To enrich the concept of spin-triplet pairing we have decided to explore one more situation
with the values of parameters s = 1073 eV, p=10"3 eV, Ag = 1073 eV and Ay =5-107%
eV. In this case the d, function shown in Fig. captures exotic effect of p-pairing not
pronouncedly seen in correlation functions F_, see Fig. and Iy _, see Fig. 2.10d]
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3 Conclusion and Outlook

In the thesis we investigated mutual effect of superconductivity and magnetism in two-
dimensional crystalline systems forming van der Waals heterostructures. We concentrated our
interest on the case of out-of-plane spin quantization axis for pairing of electrons parallel to the
magnetization of a ferromagnet. The main interest was focused on study of the quasiparticle
dispersion relations and pairing correlation functions with respect to the amplitude of spin-orbit
interaction and its influence on Cooper electron pairing. In section we have investigated
effect of the model parameters on quasiparticle dispersion relations selecting representative
physical cases.

Correlation effects which contains information on pairing of electrons within Cooper pairs
were studied in section[2.4] We examined the correlations first for individual parameter changes,
described their effect on singlet pairing ¢ and triplet pairing d, and subsequently on the
correlation functions F_ 4 and F;_. We showed that for the magnetization of a ferromagnet
parallel to the direction of the z-axis (perpendicular to the layers of the two-dimensional
systems), which in our model plays a role in the direction of polarization of electrons in
the superconductor by SOC interaction, the bound states are formed by the electrons with

opposite momentum and spin.

We see a future possibility for development of the work in the analysis of the problem
in the case of general orientation of the spin quantization axis which results due to different
magnetization orientation of ferromagnetic layer. In such a case the electron pairing is possible
not only with opposite spins but also with the same spin orientation. Subsequently, it would
be interesting to study density of states, local electron structure and correlation functions
of superconductor. Formation of the Cooper pairs with the same spin orientation can be
connected with further study of the so-called Majorana fermions, formed at the edges of the
real samples.

Next work also opens up a possibility of in-depth analysis of the theory of Gor’kov pairing
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symmetries for electrons, which can lead to a better description of the problem and subsequently
provide possibility to propose new models for novel systems. A deeper study of the theoretical
aspects of condensed matter physics and superconductivity, and quantum field theory is

certainly a challenge from personal point of view.
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